Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy

content/publication/journal-article/jpark_2023_gems_no2/featured_jpark.jpeg

Abstract

In response to the need for an up-to-date emissions inventory and the recent achievement of geostationary observations afforded by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study aims to establish a top-down approach for adjusting aerosol precursor emissions over East Asia. This study involves a series of the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product, the GEMS aerosol optical depth (AOD) data fusion product and its proxy product, and chemical transport model (CTM)-based inverse modeling techniques. We begin by sequentially adjusting bottom-up estimates of nitrogen oxides (NOx) and primary particulate matter (PM) emissions, both of which significantly contribute to aerosol loadings over East Asia to reduce model biases in AOD simulations during the year 2019. While the model initially underestimates AOD by 50.73 % on average, the sequential emissions adjustments that led to overall increases in the amounts of NOx emissions by 122.79 % and of primary PM emissions by 76.68 % and 114.63 % (single- and multiple-instrument-derived emissions adjustments, respectively) reduce the extents of AOD underestimation to 33.84 % and 19.60 %, respectively. We consider the outperformance of the model using the emissions constrained by the data fusion product to be the result of the improvement in the quantity of available data. Taking advantage of the data fusion product, we perform sequential emissions adjustments during the spring of 2022, the period during which the substantial reductions in anthropogenic emissions took place accompanied by the COVID-19 pandemic lockdowns over highly industrialized and urbanized regions in China. While the model initially overestimates surface PM2.5 concentrations by 47.58 % and 20.60 % in the North China Plain (NCP) region and South Korea (hereafter referred to as Korea), the sequential emissions adjustments that led to overall decreases in NOx and primary PM emissions by 7.84 % and 9.03 %, respectively, substantially reduce the extents of PM2.5 underestimation to 19.58 % and 6.81 %, respectively. These findings indicate that the series of emissions adjustments, supported by the TROPOMI and GEMS-involved data fusion products, performed in this study are generally effective at reducing model biases in simulations of aerosol loading over East Asia; in particular, the model performance tends to improve to a greater extent on the condition that spatiotemporally more continuous and frequent observational references are used to capture variations in bottom-up estimates of emissions. In addition to reconfirming the close association between aerosol precursor emissions and AOD as well as surface PM2.5 concentrations, the findings of this study could provide a useful basis for how to most effectively exploit multisource top-down information for capturing highly varying anthropogenic emissions.

Type
Publication
Atmospheric Measurement Techniques, Volume 16, Issue 12
Click the Cite button above to import publication metadata into their reference management software.

Supplementary notes can be accessed here.

Jincheol Park
Jincheol Park
Ph.D. candidate of Atmospheric Sciences at Dept. of Earth & Atmospheric Sciences

My research interests include Atmospheric Sciences, Air-Quality, Sensitivity Analysis and Numerical Modeling.

Prof. Yunsoo Choi
Prof. Yunsoo Choi
Professor of Atmospheric Chemistry, Air-Quality Modeling, AI (Deep Learning/Machine Learning), Satellite Remote Sensing

My research interests include Atmospheric Chemistry, Air-Quality Modeling and AI (Deep Learning/ Machine Learning).